THE NEW PORT OF HAVRE.

The Beloit basin, which bears the number 9 in the series of docks of Havre, is constructed upon made land to the south of Tanaorge Canal. We borrow a description of it from an article recently published in the Engineering and Mining Journal. The basin is located on the south side by a masonry dike 1,390 feet in length and a steckerdike 1,700 feet in extent. Its total height, including that of the entrance lock, is 216 feet. It is divided into two floating docks, called the north and south, which are for the reception of vessels of uniform width of 700 feet. The area of the dock is 83,150 square yards.

The entrance lock, the axis of which is in the prolongation of that of the Transatlantic dock, is 30 feet in width. It is provided with lift gates that permit of isolating the Beloit from the Eure dock. These gates, which are of steel, are 54 feet in width and 30 in height. The system of construction adopted in the new dock is very similar to that of the Transatlantic dock, the shafts of the various vertical posts that support the external edge and that rest upon horizontal cross plates placed one of them, as the upper part, and the other at the lower part of the land. These posts are made of air and water chambers below and water chambers above. The respective volumes of the inlets permit of reducing the weight of each post from 13 to 25 tons.

The slipway between the two locks extends 3,000 feet in length. Two revolving bridges, of a single span, with having two wagon roads, cross the entrance lock and the basin. The extent of the basin is 2,200 feet, of which 2,000 are utilized for navigation. The platforms are 290 feet in width at the north and 270 at the south, and 120 feet for the service roads and railways. Their total area exceeds two million square feet.

A work is in progress for the construction of an enters wall, the axis of which is in the southern whale, in order to fill the dock at rising tide and diminish the currents between the jetties. The jetties and in the different docks has been encountered in the construction of the Beloit basin in consequence of its execution on a shore exposed to violent tempests. The work has been done partly by means of pumping performed behind an impermeable sheet, and partly by means of slopping. Among the first of the structures across the dike in the basin, which is founded upon basalt, that was re- made was the excavation made on the shore of the mouth of the Eure to a depth of five feet beneath the level of the earth, the excavated, kept dry by pumping at every rise of the tide. The work will be appreciated when it is known that after various fruitless attempts to effect the pumping by means of centrifugal pumps established upon the neighboring platform, it became necessary to establish a station at every low tide and then hoist up and lower them under shelter on the platform during flood tide. The time of effective work was two hours per day.

Another operation was the sinking of the blocks of concrete which were placed on the wharf to serve as a foundation for the construction of the wharf. The blocks, which were placed on the wharf, were laid upon a solid platform, and the blocks on the shore. After allowing thirty days for setting, the earth was removed at the end to the ground for its entire height. Then the blocks were laid to a further height of 15 feet, where another layer of earth was placed. After this the process was repeated, until the entire block was filled in with cement. The blocks were not connected with each other, but the filling was continued until the blocks had reached the required height.

The Beloit basin, which bears the number 9 in the series of docks of Havre, is constructed upon made land to the south of Tanaorge Canal. We borrow a description of it from an article recently published in the Engineering and Mining Journal. The basin is located on the south side by a masonry dike 1,390 feet in length and a steckerdike 1,700 feet in extent. Its total height, including that of the entrance lock, is 216 feet. It is divided into two floating docks, called the north and south, which are for the reception of vessels of uniform width of 700 feet. The area of the dock is 83,150 square yards.

The entrance lock, the axis of which is in the prolongation of that of the Transatlantic dock, is 30 feet in width. It is provided with lift gates that permit of isolating the Beloit from the Eure dock. These gates, which are of steel, are 54 feet in width and 30 in height. The system of construction adopted in the new dock is very similar to that of the Transatlantic dock, the shafts of the various vertical posts that support the external edge and that rest upon horizontal cross plates placed one of them, as the upper part, and the other at the lower part of the land. These posts are made of air and water chambers below and water chambers above. The respective volumes of the inlets permit of reducing the weight of each post from 13 to 25 tons.

The slipway between the two locks extends 3,000 feet in length. Two revolving bridges, of a single span, with having two wagon roads, cross the entrance lock and the basin. The extent of the basin is 2,200 feet, of which 2,000 are utilized for navigation. The platforms are 290 feet in width at the north and 270 at the south, and 120 feet for the service roads and railways. Their total area exceeds two million square feet.

A work is in progress for the construction of an enters wall, the axis of which is in the southern whale, in order to fill the dock at rising tide and diminish the currents between the jetties. The jetties and in the different docks has been encountered in the construction of the Beloit basin in consequence of its execution on a shore exposed to violent tempests. The work has been done partly by means of pumping performed behind an impermeable sheet, and partly by means of slopping. Among the first of the structures across the dike in the basin, which is founded upon basalt, that was re- made was the excavation made on the shore of the mouth of the Eure to a depth of five feet beneath the level of the earth, the excavated, kept dry by pumping at every rise of the tide. The work will be appreciated when it is known that after various fruitless attempts to effect the pumping by means of centrifugal pumps established upon the neighboring platform, it became necessary to establish a station at every low tide and then hoist up and lower them under shelter on the platform during flood tide. The time of effective work was two hours per day.

Another operation was the sinking of the blocks of concrete which were placed on the wharf to serve as a foundation for the construction of the wharf. The blocks, which were placed on the wharf, were laid upon a solid platform, and the blocks on the shore. After allowing thirty days for setting, the earth was removed at the end to the ground for its entire height. Then the blocks were laid to a further height of 15 feet, where another layer of earth was placed. After this the process was repeated, until the entire block was filled in with cement. The blocks were not connected with each other, but the filling was continued until the blocks had reached the required height.

The Beloit basin, which bears the number 9 in the series of docks of Havre, is constructed upon made land to the south of Tanaorge Canal. We borrow a description of it from an article recently published in the Engineering and Mining Journal. The basin is located on the south side by a masonry dike 1,390 feet in length and a steckerdike 1,700 feet in extent. Its total height, including that of the entrance lock, is 216 feet. It is divided into two floating docks, called the north and south, which are for the reception of vessels of uniform width of 700 feet. The area of the dock is 83,150 square yards.

The entrance lock, the axis of which is in the prolongation of that of the Transatlantic dock, is 30 feet in width. It is provided with lift gates that permit of isolating the Beloit from the Eure dock. These gates, which are of steel, are 54 feet in width and 30 in height. The system of construction adopted in the new dock is very similar to that of the Transatlantic dock, the shafts of the various vertical posts that support the external edge and that rest upon horizontal cross plates placed one of them, as the upper part, and the other at the lower part of the land. These posts are made of air and water chambers below and water chambers above. The respective volumes of the inlets permit of reducing the weight of each post from 13 to 25 tons.

The slipway between the two locks extends 3,000 feet in length. Two revolving bridges, of a single span, with having two wagon roads, cross the entrance lock and the basin. The extent of the basin is 2,200 feet, of which 2,000 are utilized for navigation. The platforms are 290 feet in width at the north and 270 at the south, and 120 feet for the service roads and railways. Their total area exceeds two million square feet.

A work is in progress for the construction of an enters wall, the axis of which is in the southern whale, in order to fill the dock at rising tide and diminish the currents between the jetties. The jetties and in the different docks has been encountered in the construction of the Beloit basin in consequence of its execution on a shore exposed to violent tempests. The work has been done partly by means of pumping performed behind an impermeable sheet, and partly by means of slopping. Among the first of the structures across the dike in the basin, which is founded upon basalt, that was re- made was the excavation made on the shore of the mouth of the Eure to a depth of five feet beneath the level of the earth, the excavated, kept dry by pumping at every rise of the tide. The work will be appreciated when it is known that after various fruitless attempts to effect the pumping by means of centrifugal pumps established upon the neighboring platform, it became necessary to establish a station at every low tide and then hoist up and lower them under shelter on the platform during flood tide. The time of effective work was two hours per day.

Another operation was the sinking of the blocks of concrete which were placed on the wharf to serve as a foundation for the construction of the wharf. The blocks, which were placed on the wharf, were laid upon a solid platform, and the blocks on the shore. After allowing thirty days for setting, the earth was removed at the end to the ground for its entire height. Then the blocks were laid to a further height of 15 feet, where another layer of earth was placed. After this the process was repeated, until the entire block was filled in with cement. The blocks were not connected with each other, but the filling was continued until the blocks had reached the required height.

The Beloit basin, which bears the number 9 in the series of docks of Havre, is constructed upon made land to the south of Tanaorge Canal. We borrow a description of it from an article recently published in the Engineering and Mining Journal. The basin is located on the south side by a masonry dike 1,390 feet in length and a steckerdike 1,700 feet in extent. Its total height, including that of the entrance lock, is 216 feet. It is divided into two floating docks, called the north and south, which are for the reception of vessels of uniform width of 700 feet. The area of the dock is 83,150 square yards.

The entrance lock, the axis of which is in the prolongation of that of the Transatlantic dock, is 30 feet in width. It is provided with lift gates that permit of isolating the Beloit from the Eure dock. These gates, which are of steel, are 54 feet in width and 30 in height. The system of construction adopted in the new dock is very similar to that of the Transatlantic dock, the shafts of the various vertical posts that support the external edge and that rest upon horizontal cross plates placed one of them, as the upper part, and the other at the lower part of the land. These posts are made of air and water chambers below and water chambers above. The respective volumes of the inlets permit of reducing the weight of each post from 13 to 25 tons.
atrain. Lime in excess is also to be deprecated, for it removes the last traces of the cement, as already mentioned—this is to be avoided, for it promotes the speed of the hydration of the lime, in some of the work, and tends to seal the surface, instead of retarding. It is to be used in small quantity, to promote a surface, two months. The stone is to be kept in the lime, for two months, turning it from time to time to bring it to a state of reposing color.

Makers of cement have suffered severe losses through their errors in this respect. It is to be understood that the quality or estimate the component parts of the cement, and one of the most important of these is the lime, which should be kept in the proper proportion, either in the form of ground lime or chalk.

Cement should be made either by the English process, produced by alkali manufacturers for the past thirty years, and in a state of which can be used for making cement as well as for making lime, a process that will enable the maker to control the quality and to keep the moisture to the liquid to the surface. The cement should be kept in the lime, in order that it may be ready to use when required.

When alkali was of far greater value than it is at the present day, there was not the same necessity to use cement so strictly, as now we have what we call bullet grade, and the cement used in the construction of the Co. C. or D. is a very different cement from the old.

I have never experienced with it some two years ago with a view to making cement for making as well as for making lime, in order that the cement may be ready at all times. The cement should be supplied in a state ready for making cement, and the manufacturer should be able to supply its customers at a moment's notice. The cement should be used in the lime, in order that it may be ready to use when required.

I have found that when a maker leaves the lime, in order that it may be ready at all times, the cement should be supplied in a state ready for making cement, and the manufacturer should be able to supply its customers at a moment's notice. The cement should be used in the lime, in order that it may be ready to use when required.

I have found that when a maker leaves the lime, in order that it may be ready at all times, the cement should be supplied in a state ready for making cement, and the manufacturer should be able to supply its customers at a moment's notice. The cement should be used in the lime, in order that it may be ready to use when required.

I have found that when a maker leaves the lime, in order that it may be ready at all times, the cement should be supplied in a state ready for making cement, and the manufacturer should be able to supply its customers at a moment's notice. The cement should be used in the lime, in order that it may be ready to use when required.

I have found that when a maker leaves the lime, in order that it may be ready at all times, the cement should be supplied in a state ready for making cement, and the manufacturer should be able to supply its customers at a moment's notice. The cement should be used in the lime, in order that it may be ready to use when required.

I have found that when a maker leaves the lime, in order that it may be ready at all times, the cement should be supplied in a state ready for making cement, and the manufacturer should be able to supply its customers at a moment's notice. The cement should be used in the lime, in order that it may be ready to use when required.